top of page

OLIVIER GSCHWEND | Photography & Digital art | Neuroscience

  • Facebook
  • Twitter
  • Instagram
  • LinkedIn

Olivier Gschwend is a neuroscientist specialized in system neuroscience.

 

During his PhD, he focused on studying sensory processing by using the mice olfactory system as a model. His research contributed to understand how the interplay between excitatory and inhibitory neurons in the olfactory bulb separates odor representation and drives odor discrimination learning. It bridged a gap between sensory processing and learning.

 

As an early post-doctoral researcher, he has been interested in understanding how different brains areas interact and contribute to cognitive control. He con tributes to discover that the claustrum, a deep brain structure that projects to a wide variety of sensory and association cortices, controls prefrontal activity to shift attention from a stimulus-reward association to another, only when this association switch from a sensory modality to another (eg: odor to texture and vice et versa), but not within the same sensory modality (odor A to odor B). This sub-cortical structure plays therefore a crucial role in regulating so-called attentional shifts, which are essential features of cognitive flexibility.

 

He then did a post-doc in Cold Spring Harbor Laboratory, NY, and was particularly interested in understanding how individuals use different behavioral strategies in different contexts. He leveraged different technologies such in vivo calcium imaging and optogenetics in behaving mice to study how different outputs neurons in the prefrontal cortex enable or prevent the selection of context-guided behavioral strategy. He observed that the prefrontal neurons projecting to the dorso-medial striatum favor a context-dependent switch of behavioral strategy while prefrontal neurons projecting to the ventral midline thalamus tend to keep invariant previously learned strategies and prevent cognitive flexibility,

Recent talks

WWNeurise, 2022

https://www.crowdcast.io/e/wwneurise/39

Articles in preparation

 

Olivier Gschwend §, Tao Yang, Daniëlle van de Lisdonk, Xian Zhang, Radhashree Sharma, Bo Li §. Prefrontal top-down projections control context-dependent strategy selection. 2021.

https://www.biorxiv.org/content/10.1101/2021.12.14.472559v1 

§ corresponding author

Leon Fodoulian*,Gschwend, O.*, Huber, C.*, Mutel S.*, Salazar, R.*, Roberta Leone,Jean-Rodolphe Renfer,,Ivan Rodriguez and Alan Carleton. 2020. Claustrum to medial prefrontal cortex glutamatergic projections control attentional shifts. 

https://www.biorxiv.org/content/10.1101/2020.10.14.339259v1

* equal contribution

GschwendAbrahamNatNeuro2015.jpg

Published articles

Gschwend, O.,Beroud, J., Vincis, R., Rodriguez, I., Carleton, A., 2016. Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Sci Rep 6, 36514. 

https://www.nature.com/articles/srep36514

 

Gödde, K., Gschwend, O., Puchkov, D., Pfeffer, C.K., Carleton, A., Jentsch, T.J., 2016. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odor discrimination. Nat Commun 7, 12043. 

https://www.nature.com/articles/ncomms12043

 

Gschwend, O.*, Abraham, NM.*, Lagier, S., Begnaud, F., Rodriguez, I., and Carleton A. 2015. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nature Neuroscience18, 1474–1482.

https://www.nature.com/articles/nn.4089

Tatti, R., Bhaukaurally, K., Gschwend, O., Seal, R.P., Edwards, R.H., Rodriguez, I., Carleton, A., 2014. A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 5, 3791. 

https://www.nature.com/articles/ncomms4791

 

Gschwend, O., Beroud, J., Carleton, A., 2012. Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS ONE 7, e30155. 

http://dx.plos.org/10.1371/journal.pone.0030155

 

Vincis, R., Gschwend, O.*, Bhaukaurally, K.*, Beroud, J., Carleton, A., 2012. Dense representation of natural odorants in the mouse olfactory bulb. Nature Neuroscience 15, 537–539.

https://www.nature.com/articles/nn.3057?proof=trueIn 

* equal contribution

Book chapter

 

Menini, A., Bathellier, B., Gschwend, O., Carleton, A., 2010. Temporal Coding in Olfaction. CRC Press, Boca Raton (FL).

 

 

bottom of page